• Klein, AM et al. Importance of pollinators in changing landscapes for world cultures. PR Soc. B 274303–313 (2007).

    Google Scholar

  • Potts, SG et al. Global pollinator decline: trends, impacts and drivers. School Trends. Evol. 25345–353 (2010).

    PubMed

    Google Scholar

  • Gallai, N., Salles, JM, Settele, J. & Vaissiere, BE Economic assessment of the vulnerability of world agriculture in the face of pollinator decline. School. Econ. 68810–821 (2009).

    Google Scholar

  • Ollerton, J. Pollinator diversity: distribution, ecological function and conservation. Ann. Rev. School. Evol. System 48353–376 (2017).

    Google Scholar

  • Biesmeijer, JC et al. Parallel decline of pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313351–354 (2006).

    ADS
    CASE
    PubMed

    Google Scholar

  • Kosior, A. et al. The decline of bumblebees and cuckoos (Hymenoptera: Apidae: bombini) of Western and Central Europe. Oryx 4179–88 (2007).

    Google Scholar

  • Cameron, South Africa et al. Patterns of widespread decline in North American bumblebees. proc. Natl. Acad. Sci. UNITED STATES 108662–667 (2011).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Cameron, SA, Lim, HC, Lozier, JD, Duennes, MA, and Thorp, R. Testing the invasive pathogen hypothesis of bumblebee decline in North America. proc. Natl. Acad. Sci. UNITED STATES 1134386–4391 (2016).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Gill, RJ, Ramos-Rodriguez, O. & Raine, NE Combined exposure to pesticides severely affects individual and colony-level characteristics in bees. Nature 491105-108 (2012).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Whitehorn, PR, O’Connor, S., Wackers, FL & Goulson, D. Neonicotinoid pesticide reduces bumblebee colony growth and queen production. Science 336351–352 (2012).

    ADS
    CASE
    PubMed

    Google Scholar

  • Stanley, DA et al. Exposure to neonicotinoid pesticides impairs the crop pollination services provided by bumblebees. Nature 528548-550 (2015).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Baron, GL, Raine, NE & Brown, MJF General and species-specific impacts of a neonicotinoid insecticide on ovarian development and diet in wild bumblebee queens. PR Soc. B 28420170123 (2017).

    Google Scholar

  • Siviter, H., Folly, AJ, Brown, MJF & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bomb on bumblebee (Bombus terrestris) larval growth. proc. Biol. Sci. 28720200935 (2020).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Blacquière, T., Smagghe, G., van Gestel, CAM & Mommaerts, V. Neonicotinoids in bees: a review of concentrations, side effects and risk assessment. Ecotoxicology 21973–992 (2012).

    PubMed
    PubMed Center

    Google Scholar

  • Richardson, LL et al. Secondary metabolites from floral nectar reduce parasitic infections in bumblebees. proc. Biol. Sci. 28220142471 (2015).

    PubMed
    PubMed Center

    Google Scholar

  • McAulay, MK & Forrest, JRK How do sunflower pollen mixtures affect the survival of queenless microcolonies of bumblebees (Bombus impatiens)?. Interaction of arthropod plants. 13517–529 (2019).

    Google Scholar

  • European Food Safety Authority. Guidance on the risk assessment of plant protection products for bees (Apis mellifera, Bomb spp. and solitary bees). EFSA J. 113295 (2013).

  • Bésard, L. et al. Compatibility of traditional and new miticides with bumblebees (Bombus terrestris): a first laboratory evaluation of toxicity and sublethal effects. Sci pest management. 66786–793 (2010).

    CASE
    PubMed

    Google Scholar

  • Elston, C., Thompson, HM & Walters, KFA Sublethal effects of thiamethoxam, a neonicotinoid pesticide, and propiconazole, a DMI fungicide, on bumblebee colony initiation (Bombus terrestris) micro-colonies. Apidology 44563-574 (2013).

    CASE

    Google Scholar

  • Barbosa, WF, De Meyer, L., Guedes, RNC & Smagghe, G. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae). Ecotoxicology 24130-142 (2015).

    CASE
    PubMed

    Google Scholar

  • Dance, C., Botías, C. & Goulson, D. The combined effects of monotonous diet and thiamethoxam exposure on bumblebee microcolony performance. Ecotoxicol. About. Saf. 139194-201 (2017).

    CASE
    PubMed

    Google Scholar

  • Schmehl, DR, Tome, HVV, Mortensen, AN, Martins, GF & Ellis, JD Protocol for the in vitro rearing of honey bees (Apis mellifera L.) workers. J.Apic. Res. 55113-129 (2016).

  • Pereboom, JJM, Velthuis, HHW & Duchateau, MJ The organization of larval feeding in bumblebees (Hymenoptera, Apidae) and its importance for caste differentiation. Insects Soc. 50127–133 (2003).

    Google Scholar

  • Dorigo, AS, Rosa-Fontana, AD, Soares-Lima, HM, Galaschi-Teixeira, JS, Nocelli, RCF & Malaspina, O. In vitro larval rearing protocol for the stingless bee species Melipone scutellaris for toxicological studies. PLoS One 14. https://doi.org/10.1371/journal.pone.0213109 (2019).

  • Botina, LL et al. Toxicological evaluations of agrochemical effects on stingless bees (Apidae, Meliponini). MethodsX seven100906 (2020).

    PubMed
    PubMed Center

    Google Scholar

  • Black, BC, Hollingworth, RM, Ahammadsahib, KI, Kukel, CD & Donovan, S. Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pesticide. Biochemistry. Physiol. 50115-128 (1994).

    CASE

    Google Scholar

  • Waketa, T. et al. The discovery of dinotefuran: a new neonicotinoid. Sci pest management. 591016-1022 (2003).

    CASE
    PubMed

    Google Scholar

  • Shafiei, M., Moczek, AP & Nijhout, HF Food availability controls onset of metamorphosis in dung beetle Onthophagous bull (Beetles: Scarabaeidae). Physiol. Entomol. 26173-180 (2001).

    Google Scholar

  • Stieper, BC, Kupershtok, M., Driscoll, MV & Shingleton, AW Imaginal discs regulate the rate of development in Drosophila melanogaster. Dev. Biol. 32118–26 (2008).

    CASE
    PubMed

    Google Scholar

  • Nijhout, HF & Williams, C. Control of molting and metamorphosis in the tobacco hornworm, manduca sexta (L.): growth of the last instar larva and decision to pupate. J. Exp. Biol. 61481–491 (1974).

  • Cnaani, J., Robinson, GE & Hefetz, A. The Critical Period for Caste Determination in Bombus terrestris and its juvenile hormone correlates. J. Comp. Physiol. A 1861089–1094 (2000).

    CASE
    PubMed

    Google Scholar

  • Goulson, D. et al. Can alloethism in bumblebee workers, Bombus terrestrisbe explained in terms of foraging efficiency?. Anim. Behaviour 64123-130 (2002).

    Google Scholar

  • Syromyatnikov, M., Nesterova, E., Smirnova, T. & Popov, V. Methylene blue may act as an antidote to pesticide poisoning of bumblebee mitochondria. Sci. representing 1114710 (2021).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Raghavendra, K. et al. Chlorfenapyr: a new insecticide with a new mode of action can control pyrethroid-resistant malaria vectors. Malar. J ten16 (2011).

    PubMed
    PubMed Center

    Google Scholar

  • Cao, Y. et al. HPLC/UV analysis of chlorfenapyr residues in cabbage and soil to study the dynamics of different formulations. Sci. About. 35038–46 (2005).

    ADS
    CASE
    PubMed

    Google Scholar

  • Costa, EM et al. Toxicity of insecticides used in the cultivation of Brazilian melon for the honey bee Apis mellifera under laboratory conditions. Apidology 4534–44 (2014).

    CASE

    Google Scholar

  • Cresswell, JE, Robert, F.-XL, Florance, H. & Smirnoff, N. Release of ingested neonicotinoid pesticides (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Sci pest management. 70332–337 (2014).

    CASE
    PubMed

    Google Scholar

  • Czerwinski, MA & Sadd, BM Adverse interactions between neonicotinoid pesticide exposure and bumblebee immunity. J Exp Zool A Ecol Integr Physiol 327273-283 (2017).

    CASE
    PubMed

    Google Scholar

  • Mobley, MW & Gegear, RJ One size does not fit all: Caste and sex differences in bumblebee response (Bombus impatiens) to chronic oral exposure to neonicotinoids. PLOS ONE 13e0200041 (2018).

    PubMed
    PubMed Center

    Google Scholar

  • Simmons, WR & Angelini, DR Chronic neonicotinoid exposure increases expression of antimicrobial peptide genes in bumblebee Bombus impatiens. Sci. representing seven44773 (2017).

    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Doublet, V., Labarussias, M., de Miranda, JR, Moritz, RFA & Paxton, RJ Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to increase bee mortality throughout throughout their life cycle. About. Microbiol. 17969–983 (2015).

    CASE
    PubMed

    Google Scholar

  • Eiri, DM, Suwannapong, G., Endler, M. & Nieh, JC Nosema ceranae can infect bee larvae and reduce adult longevity. PLoS One ten(2015).

  • Dai, P., Jack, CJ, Mortensen, AN & Ellis, JD Acute toxicity of five pesticides for Apis mellifera larvae reared in vitro. Sci pest management. 732282-2286 (2017).

    CASE
    PubMed

    Google Scholar

  • Rand, EE et al. Proteomic and metabolomic analysis reveals a rapid and extensive detoxification capacity of nicotine in bee larvae. Insect biochemistry. Mol. Biol. 8241-51 (2017).

    PubMed

    Google Scholar

  • R. R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021). Base Team R (2021). URLs https://www.R-project.org/.

  • Previous

    What is the 10-3-2-1-0 sleep method?

    Next

    Input method editor software market growth at a rate of 15.60%

    Check Also